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A New Fast and Accurate Algorithm for the

Computation of Microstrip Capacitances

AMEDEO PREMOLI

Absfract-A new algorithm is presented for the calculation of
TEM parameters of microstrips, based on a lmnped-sircuit model

of the microstrip transverse static field. The use of such an algorithm
allows one to obtain either very high accuracies or very low computer
times when ordinary accuracies are tolerated. Compared with the
similar technique by Lennartsson [191,the analysis method presented
here allows substantial reduction in computer time, storage, and
errors.

I. INTRODUCTION

M ICROSTRIP circuit design requires efficient algor-

ithms for the computation of the line-per-unit-

length static parameters, knowledge necessary both in the

TEM approximation and for taking into account the dis-

persion effects. While in current literature conformal

mapping [1], [2], variational techniques [3]–[8], the

relaxation algorithm [9]-[11 ], the method of subareas

[12], the method of Green’s function [13]-[16], or its

varieties like the multiple image technique [17] and mo-

ment method [18] are generally used, this paper presents

an algorithm based only on well-known concepts of lumped-

circuit theory.

The main features of this algorithm are as follows.

1) The lumped model of the distributed capacitance

from which all other static parameters can be derived,

drastically reduces the number of loops and nodes of the

circuit with respect to the classical discrete model used

in [19]. Moreover, the discretization is used in only one

dimension, parallel to the substrate.

2) Matrix inversion, used in most of the known meth-

ods, is avoided in favor of an algorithm due to Levinson

[20] which allows remarkable reductions of storage,

computer time, and roundoff errors.

3) A formula indicates the influence of the discretization

errors on the capacitance value: this allows a further time

reduction.
4) In the synthesis problem, the algorithm is very con-

venient since the capacitance values, for cliff erent values of

the strip width, are obtained as partial results without a

further computation.

5) The program works on a small computer IBM 1130

with 8K storage. On a computer IBM 360/67 with double

precision, an excellent accuracy (10-8) or, alternatively,
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a very low computation time

calculation) can be attained.

II. LUMPED

(0.02 s for a capacitance

MODEL

The aim of this paper is the computation of the per-

unit-length capacitance of an open microstrip, with strip

width w and substrate thickness h (Fig. 1), by using a

lumped equivalent circuit (Fig. 2), which is obtained by

discretizing Laplaee’s partial differential equation. The

discretization is realized with N steps of length u along

the f axis (parallel to the ground) and with an infinite

number of steps of length au along the orthogonal n axis.

Between the geometrical dimensions of the rnicrostrip w

and h and the parameters M and H of the model, the

following relations hold:

fl~ = W/U ~ = h/(au) – 1. (1)

Furthermore, in the model, the width of the substrate is

not infinite, as theoretically supposed; however, we as-

sume that the ratio K = dV/h is large enough, hence also

uN/w >>1, in such a way that the error is small; later

on this error will be drastically reduced.

The values, normalized with respect to CO(free-space

perrnittivity), of the elementary capacitances are linear

Fig. 1. Open microstrip.
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Fig. 2. Lumped model of the distributed capacitance.
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or inverse linear functions of a; e is the relative permittivity

of the substrate (Fig. 2). Later on, a will tend to zero; that

is, the discretization along the q axis will be avoided in

order to reduce the errors and to simplify the formulas.

In Fig. 2 the upper strip is indicated by a dotted line which

encircles the M terminals corresponding to it.

Thus it is necessary to compute the M X M impedance

matrix Z~ of the terminals 1,2,.”. ,M with respect to

node O, which represents the microstrip ground in the

model. Then the microstrip capacitance can be found by

short-circuiting the terminals 1,2,. . . ,M, and by comput-

ing the admittance between the resulting node and node

o.

If the model of Fig. 2 were directly used as in [19],

the computation of Z~ would be rather formidable, while

the circuit transformations, shown in the next section,

will allow closed formulas for the elements of Z~ to be

obtained.

III. CIRCUIT TRANSFORMATIONS

The N-port of Fig. 2, with the nodes 0,1,2, ” ● ” ,M as out-

put terminals, becomes much more simplified with suitable

equivalent transformations. The following matrix, re-

presenting the short-circuit admittance of a degenerate

uniform ladder structure, whose shunt branches are open

circuits, is first diagonalized [21] by a similarity trans-

formation:

GN =

1 –1 o $..

–1 2 –1 . . .

0 –1 2 . . .

. . . . . .

. . . . . .

. . . . . .

000.””

000 ..”

0
~

00

00

. .

. .

. .

2 –1

–1 1

= T~GNOTN–’

(2)

where TN ( TNt = TN–l) and GNOare the orthogonal modal

matrix and the spectral representation of GN, respectively.

Their elements are, respectively,

ttj = (2/N) 112cOS
[

7r(j — 1) (i — 0.5)

N 1
I
1j=2,3,.. .,N

til = l/( N)112 J! i= 1,2,0 ..,N

(3)

‘fi=2[’-cosrniP)l‘=12”””)N‘4)
The definition of the square root bn of g. will be useful

later on

643

b. = g.1/2 = 2 sin [T(:N ‘=l;’-””)No‘5)
By the preceding diagonalization, the circuit of Fig. 2

can be transformed into that of Fig. 3(a) : actually the in-

sertion of four 2N-port transformers I’1, Yz, I’g, and 171

allows the decomposition of the capacitance reticulum of

Fig. 2 in 2N ladder 2-ports Am@), An(m) (n = 1,2,””” ,N),

whose values are determined by the g. elements defined in

(4). The N two-ports An(h) are composed of H + 1 series

branches and of H shunt branches [Fig. 3(b)], while the

N 2-ports A%(”) are similar, but with an infinite number of

branches and with a higher impedance level [Fig. 3(c)].

However, Al(h) and Al(-) are degenerate ladder networks

with shunt branches open, since gl = O. That is, Al(h) is

a single admittance VI = e/h [Fig. 3(d)], while Al(w) is

an open-circuited 2-port.
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Fig. 3. (a) First equivalent circuit of the lumped model of Fig. 2.
(b) 2-ports A.@J(n = 2,0.. JV). (c) 2-porte A~@) (n = 2,3,.0 .,N).
(d) 2-port AI(kJ.
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As mentioned in Section II, the discretization along the

q axis can be avoided by letting a go to zero in the elemen-

tary capacitances of A.(~j and A~t*) [Fig. 3(b) and (c)].

Their characteristic admittance and characteristic propa-

gation factors become

y~(h) = eb. L&th) = hb.,

Yofi(m) = ijn Oon(m) = m
7 n = 2,3, ““o,N (6)

whereas the chain matrices of 17J, I’1 and rl, rt are, re-

spectively, [Fig. 3(a) ]

K :1 r: ::J ‘7)
Thus ra and 17iare mirror images equal to I’1 and rt.

Furthermore, in Fig. 3(a) the reference node q, common

to the 2-ports and to the transformers, does not at all

coincide with the microstrip ground (node O).

Now the circuit of Fig. 3(a) can be further simplified.

Actually ra and 17t can be substituted by a single trans-

former [1’t in Fig. 4(a)] because they can be considered

in parallel since they are mirror image equal. Then I’1 can

be avoided because the N – l-ports As(”) connected with

it have infinite attenuation [see (6)]. The last ri can be

substituted by a 2-port transformer rs [Fig. 4(a)] with

voltage ratio N112since any of its input terminals are con-

nected with the ground (node O).

Furthermore the N – 1 single driving point admittances

yn(n = 2,3,. . . ,N) can substitute the 2N – 2 2-ports

Anth) and An(m) [Fig. 4(a)]; any admittance y. is composed

of a connection of two 2-ports An(h) and A~(w) [Fig. 4 (b);

see (6) ]

yn = bn[l + e/th (hbn) ], n = 2,3,. ..,N. (8)

Finally the transformer- 175can be eliminated, obtaining

the circuit of Fig. 5, where the admittance YI’ is

y{ = NyI = eN/h. (9)

IV. IMPEDANCE MATRIX

A physical consideration simplifies the computation of

matrix Z~ (z~l ,J: since the width of the whole layer Nu

is much larger than the width w of the upper strip (Fig.

1), Z~ becomes a symmetrical Toeplitz matrix, where any

element depends only on the cliff erence of the two indices

0)
Fig. 4. (a) Second equivalent circuit of the lumped model of

Fig. 2. (b) Driving point admittances ~. (n = 2,3,.. ●,N).
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Fig. 5. Third (definitive) equivalent circuit of the lumped model of
Fig. 2.

zm~,nk~=Rm@) with 7n=1+17n1-7n21,

‘m = 1,2,. *.,M. (lo)

The index N denotes the considered width of the substrate.

Tb.is property of ZM allows a remarkable reduction of

computer time and storage because only M elements of ZjW

must be computed, and also because it can be inverted

with a more convenient algorithm than the current ones,

as will be seen later on.

Hence the nodes ml and rm must be chosen in the followi-

ng manner:

rn,=(N-m+2)/2

mt = (N + m) /2, N + m even

ml=(N–m+l)/2

m=(N+m– 1)/2, N + m odd. (11)

For example, if m = 1, ml is equal to mz, that is, RI(N) is

the driving-point impedance between the node N/2 (N

even) or (N + 1)/2 (N odd) and the node O (Fig. 5).

Now we investigate the analytical expression of R~fN)

(m = 1,2, . . . ,M) by inspection of the equivalent circuit

of Fig. 5 and by the definition (10)

Rm(N) = h/ (cN) + S [(trrdm,,.) /Yn],

?2==2

m = 1,2,. .*,M (12)

where the product tml,.tm,,.can be developed from (3)

w,.k,,n = (– 1)”-’/Nt

+ [(–1)” – (–l)N+~+”]b.2/(4N)

+ cos [T(n – 1) (m – 1)/N]/N. (13)

Thus we can split (12) by using (13)

Rrn~N~= Rm* + Raj m = 1,2,. .*,M (14)

where

Ra=O for N+meven

R. = r. = i [(– 1) ‘b~2/(2NyJ] for N + m odd
n=7, (15)

R~* = ~ {COS[r(n – 1) (m – 1)/N]/(Ny~) )
~=a

+ h/(eN) – ; [(–1)”/(Nyn)]. (16)
~=a
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Now let us define Theupper bound N.ofthe sums in (25), (27), and (29)

r~ = Em* — Rm.l*, m = 1,2,. .*,M (17)
is theoretically equal to N, but in practice it can be chosen

much Iower than N, because the factor 1/ (ezfib” + ii)
where RO* = o for sake of convenience. converges to zero for increasing n. The value Ns can be

Then from (16) and (17) we obtain evaluated from

S {sin [7r(n – 1) (m – 1.5)/N]&/ (Ny.) ), i e
e4hsin [r (N. – 1)/(2N)]N 10~}

‘r.=— (30)

n-z . .>

m = 2,3,. ..,M (18) N. c= N6 log 10/(2h7r) (31)
.

form=l

where 10–6 is the required precision.

rl = RI* = h/(~N) + S [2/(NyJ ]. (19) The summations in (24), (26), and (28) can be sub-
n=8,5,7-.. stituted by suitable trigonometric formulas, i.e.,

Now we could compute the impedance RmfNl, but the sums

present in (15), (18), and (19) are extended to very r.’ = ~ sin
[

T(N — 1)(2N+ 1)1sin [r (N/2) – 37r/4]
many terms because N is generally very high. A suitable 4N

investigation of this problem allows a computation reduc-

tion; the factor 1/ (N~m) [see (8)] can be split into two

addends /
sin [~/2 + m/ (4N) ] (32)

l/(Ny.) = d/[b.(e”bn + k)] + j/b., n = 2,3,... ,N

(20) [
T.’ = –jsin (N– l) fi(m– 1.5) 1

where

d = –2e/[N(l + ,)2] k = (e – 1)/(, + 1)
. sin

[ 1[
~(m – 1.5) / sin & (m – :11.5)

1
(33)

j = l/[N(l + e)]. (21)

= h/(cN) + ~ ~ 2/6. + In
sin [T(N + N.* — 2)/(4N)] + Sin [7r(N – N.*)/(4N)] ~m(l +,,, (34)

rl’
n~3,6,7 sin [T(N + N.* – 2)/(4N)] – sin [7r(N – N.*)/(4N)] /

Now we can substitute (20) into (15), (18), and (19)

‘ra = r.’ + r.”, (22)

rm = rm’ +- rm’f, m= 1,2,. ..,M (23)

where the following equalities hold:

N
r.’ = (f/2)z [(–l)%] (24)

T.” = (d/2) ~- [(–l)”b./(e2ti~ + k)] (25)

rm’ = – ~~ sin [m(n – 1) (m – 1.5)/N],
m=z

m = 2,3,. . .,M (26)

rm” = – d~ {sin [7r(n – 1) (m – 1.5)/N]/(e2hbn+ k) ),

m = 2,3,”. *,M (27)

rl’ = h/(eN) + ~ ~ (2/Q (28)
n-3,5,7...

rl” = d s {2/[b~(e2hb” + k)]). (29)
m=3>5,7...

where N,* = N. or N.* = N. + 1 for N, even or odd,

respectively. At this point one has the comlplete formulas

necessary for the computation of the vector Rm@’), i.e.,

R,[N~ = rl’ + r[’ i- Ra

R.+I@’J = R.(N) + R. + r-{ + r,~[’ (35)

Ra=Ofor N+meven, Ra=rJ+rJ’ for N+m odd.

Now it is necessary to compute the values of Rm{N)

(m = 1,2, . . . ,M) for N = IXI. On the basis of several

numerical examples, the following recursive formula can

be shown to hold:

&(N) ~ R~{Ni2~ – Am/N2, m = 1,2,. ..,M (36)

where Am in a good approximation does nof, depend on N.
If

R# = [4R~(N) – R~@Jlz~_J/3 (37)

then it is easy to prove that R~fN) approximates the value

R~(W) much more closely than Rm(N). Thus it is possible to

have excellent approximation with N not too large.

V. MATRIX INVERSION

Now the terminals 1,2,... ,M must be connected in only

one node in order to find the capacitance C with respect

to node O; actually it is

c = [1,1,.. .,l]ZM–1[1,1,. . . . 11]’ (38)
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TABLE I

K 4 8 16 32 64

12.832833014 12.778402485 12.778806580 12.778303290 12.7783922oI
4

12.502125223 12.484408741 12.483317026 12.483230474 12.483219221
8

4 10-3

f2.470526891 12.436365342 12.455133715 12.454969028 12.454995091
16

1.6 10-4

12.469576405 12.455505540 12.454220597 12.454 f25746 12.454117502
32 -51.2 10

12.469530228 12.455464747 12.454178043 12.454083476 12.454074458

64 0.9 10
-6

12.469527464 12.455462023 f2.454175199 12.454080726 12.454072476
128

1.0 10-7

12.454080582 12.454072237
256

12.454080571 12.454072234
512

Note: Values of C (w/h,.,M,K) (per-unit-length capacitances of microstrip, normaliz~
tions of K and M, while w/h and c are equal to 1 and 6, respectively. For K = 2M the
C (1,6,256,512) are reported under the preceding values. The relative error of C (1,6

128 256

Ii2.4549893i0 12.454989226

f2.454JJ6658 12.454116570

12.454071503 12.454071490

I with respect to .0) as func
lative errors with respect t
!56,512) is estimated by ex

trapolation.

that is, C is the sum of the M2 elements of the matrix

Z~–’, Since Z~ is a Toeplitz matrix [see ( 10) ] the iterative

Levinson algorithm [20] allows C to be computed, ob-

taining as partial results the sums C~ of the mz elements of

the matrices Z~–l (m = 1,2,... ,M – 1), where Zw is the

submatrix of Z-l, obtained by deleting the last row and

the last column, i.e.

cm = [1,1,.. .,l]zm–l[l,l,. . .,1]’. (39)

Hence it will be C = CM.

This algorithm has the following advantages compared

to classical matrix inversion methods: reduced storage,

low roundoff errors, and very short computer time.

A small computer like the IBM 1130 with 8K storage,

allows the inversion of a 300 X 300 Toeplitz matrix; thus

very dense discretization and/or very short computer time
are obtained.

But this algorithm has another characteristic; the par-

tial results Cm [see (39)] are the values of the capacitances

of the microstrip with width of the upper strip (see Figs.
1 and 2) equal to win/M and with the same thickness h.

Then by only one step one can find the whole curve of Cm

as function of win/M for m = 1,2,.. . ,M. This is very

important in the synthesis problem because one can im-

mediately obtain the value of w corresponding to the

required value of capacitance by a direct interpolation.

VI. ERRORS AND COMPUTER TIMES

The numerical results of the above algorithm are af-

fected by three types of errors:

el error due to noninfinity of M, i.e., due to discreti-

zation;

e2 error due to noninfinit y of K = Nu/h;

es error due to finite word length, i.e., due to roundoff.

If C is the effective value and COis the computed value,

then

C(w/h,e) = Co(w/h,ejM,K)

+ e,(w/h,e,M) + e, (w/h,c,K) + e,. (40)

Error es is stochastic and can be neglected for the mo-

ment since the considered values of M and K are such

that the deterministic error eI is prevailing; e2 is also

negligible if the formula (37) is used with K = 8 + 32.

Only el is a significant error, but it can be estimated on

the basis of a great number of numerical examples; it

turns out that it can be represented by the approximate

expression

el (w/h,e,M) ~ 5/3 Co(w/h,e,M,K)

– 2 Co(w/h,c,M/2,K) + 1/3 Co(w/h,e,M/4,K) . (41)

Hence, if the preceding formula is substituted in (40), one
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TABLE 11

r/h
I

t o 6.0 c - 9.5 c - 16. o c = 28. o

, i
] ~ I 134.5181 I 1139.4533 I 85.7565 I 65.5287

0.1 t b j 135.455 I 110.t72 I 85.9659 I 65.5298

c 134.352 110.058 87.762 68.819

a 112.4178 91.3236 71.5062 54.6170

0.2 b 113.2j’2 91.809 71.6954 54.6138

I c I 89.909 I 73.290 I 58.110 I 45.281

0.7

I a 61.8381 50.0281 39.0528 29.7697

1.0 I b I 62.713 ] 50.5o1 I 39.2512 I 29.7629 I

2.0

I C I 41.510 I 33.493 I 26.248 I 20.197 I

Note: Characteristic impedances, obtained by this algorithm a, by
the method of moments b, and by conformal mapping c.

obtains

C(W/h,e) ~C(W/h,e,M,K) =8/3 Co(w/h,@f,K)

–2co(w/h,@l/2jK) +1/3 C’,(w/h,,,M/4,K). (42)

Then one can conclude that C(w/h,@l,K) approximates

the exact value C(w/h,e) much more closely than CO(w/

h,@l,K) for the same value M; in this way the influence

of error el is drastically reduced.

Table I shows for w/h = 1 and e = 6, the value of

C (w/h,#,K) normalized with respect to eoas a function

of M and K. One can easily observe the reduction of error
when M and K increase. Furthermore it is convenient to

choose the value of Ks 2A4 in order that the errors due

to the finiteness of M and K be of the same order. However,

with M = 4 and K = 8, an accuracy 4 X l&3 is obtained,

647

while with M == 64 and K = 128 the accuracy is 10-7. The

same results are obtained with different value~} of w/h and

c. Finally the values in Table I confirm that i,he roundoff

errors et are negligible,

The computer time depends in a significant way on] y

on M and N,, according to the following formula (S in

seconds) :

S = alN, -t a2N~M + adW2 (43)

where, on the IBM 360/67 computer the values of the

coefficients, estimated experimentally, are

al = 0.0007 @ = 0,000048 at = ().001N9$,

For example, for an accuracy of 10–8 the required time is

about 10–2s.

The characteristic impedance ZO of the microstrip is

then calculated by using the expression ZO = pO/ {VO.

[C(w/h,l)C(w/h,e) ]’/2} where PO (4T 10-7 H/m) is the
magnetic permeability, and VO (2.9978 10s m/s) is the

velocity of light. The computed results for a ruicrostrip

with different values of e and w/h are given in Table II

and compared with those obtained by Farrar and Adams

[18] (by the method of moments) and by Sobol [22] (by

conformal mapping). The values of the capacitance C (w/

h,c) were computed with M = 32 and K = 64 (accuracy

of about 10+).

VII. CONCLUSIONS

A method was presented for the evaluaticln of TEM

parameters of microstrips based on a philosophy entirely

different from that followed in the current literature. The

circuit model used allows one to obtain very high accura-

cies (10-8) or to reduce the computer time when ordinary

accuracies are allowed (10-2 s for a 10-3 accuracy). The

model can be easily extended to cover more complicated

structures.
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Calculation of Microstrip Discontinuity Inductances

ALISTAIR F. THOMSON AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Inductive compo-nents of microstrip discontinuity

equivalent circuits are calculated by the Galerkin method. The

formulation and method of calculation are discussed and a large

number of numerical results for symmetric corners, T junctions,

and steps changes are presented. These results compare well with

experiment.

INTRODUCTION

T HE characterization of microstrip discontinuities by

equivalent circuits is currently of some interest. De-

tailed, knowledge of the parameters in these circuits en-

ables easy implementation of paper designs without tedious
cut-and-try methods. While the published literature [l]–

[4] provides curves for the capacitive components of these

circuits, little is available for their inductive components.

The method of calculation suggested by Horton [5], [6]

is not rigorous since the inductance calculation is based

on charge estimates and the results obtained are not in
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agreement with experiment. The magnetic wall model has

been used for triplate lines which are wide and homogeneous

and have confined fields, but its extension to microstrip

lines which are inhomogenous and much narrower in com-

parison and are open structures is not completely justified.

Quasi-static calculation of inductance by the moment

method [7] has provided results which show reasonable

agreement with experiment. However, the disadvantage of

this method for these three-dimensional problems as shown

by Farrar and Adams [1] is the very large computer store

requirements even for modest discretization. The alterna-

tive is to use a finite-element method as in the skin-effect

formulation [8]. The results of discontinuity inductance

from this method obtained previously were inaccurate as

they were arrived at by subtracting two nearly equal

numbers. Also the method was limited to finite-length

strips and thus could not represent the actual situation
in which the strips extend so far from the discontinuity y

that they may be considered as semi-infinite. The present

paper is an extension of this finite-element method which

overcomes these difficulties, and the results obtained for

right-angled bends, step-width changes, and symmetrical

T junctions are presented in the form of curves. Compari-

son of the results with experiment [9] shows reasonable


