642

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, No. 8, AUgUST 1975

A New Fast and Accurate Algorithm for the
Computation of Microstrip Capacitances

AMEDEO PREMOLI

Abstract—A new algorithm is presented for the calculation of
TEM parameters of microstrips, based on a lumped-circuit model
of the microstrip transverse static field. The use of such an algorithm
allows one to obtain either very high accuracies or very low computer
times when ordinary accuracies are tolerated. Compared with the
similar technique by Lennartsson [19], the analysis method presented
here allows substantial reduction in computer time, storage, and
errors.

I. INTRODUCTION

ICROSTRIP circuit design requires efficient algor-
ithms for the computation of the line-per-unit-
length static parameters, knowledge necessary both in the
TEM approximation and for taking into account the dis-
persion effects. While in current literature conformal
mapping [1], [2], variational techniques [37]-[8], the
relaxation algorithm [9}-[117], the method of subareas
(127, the method of Green’s funetion [137-[167], or its
varieties like the multiple image technique [17] and mo-
ment method [187] are generally used, this paper presents
an algorithm based only on well-known concepts of lumped-
circuit theory.

The main features of this algorithm are as follows.

1) The lumped model of the distributed capacitance
from which all other static parameters can be derived,
drastically reduces the number of loops and nodes of the
circuit with respect to the classical diserete model used
in [197]. Moreover, the discretization is used in only one
dimension, parallel to the substrate.

2) Matrix inversion, used in most of the known meth-
ods, is avoided in favor of an algorithm due to Levinson
[207] which allows remarkable reductions of storage,
computer time, and roundoff errors.

3) A formula indicates the influence of the discretization
errors on the capacitance value: this allows a further time
reduction.

4) In the synthesis problem, the algorithm is very con-
venient since the capacitance values, for different values of
the strip width, are obtained as partial results without a
further computation.

5) The program works on a small computer IBM 1130
with 8K storage. On a computer IBM 360/67 with double
precision, an excellent accuracy (10-%) or, alternatively,
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a very low computation time (0.02 s for a capacitance
calculation) can be attained.

1I. LUMPED MODEL

The aim of this paper is the computation of the per-
unit-length capacitance of an open microstrip, with strip
width w and substrate thickness 2 (Fig. 1), by using a
lumped equivalent circuit (Fig. 2), which is obtained by
discretizing Laplace’s partial differential equation. The
discretization is realized with N steps of length u along
the £ axis (parallel to the ground) and with an infinite
number of steps of length au along the orthogonal % axis.
Between the geometrical dimensions of the microstrip w
and h and the parameters M and H of the model, the
following relations hold:

M =w/u H=h/(ocu) — 1. (1)

Furthermore, in the model, the width of the substrate is
not infinite, as theoretically supposed; however, we as-
sume that the ratio K = uN/h is large enough, hence also
uN/w>> 1, in such a way that the error is small; later
on this error will be drastically reduced.

The values, normalized with respect to & (free-space
permittivity), of the elementary capacitances are linear
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Fig. 2. Lumped model of the distributed capacitance.
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or inverse linear functions of «; ¢1is the relative permittivity
of the substrate (Fig. 2). Later on, « will tend to zero; that
is, the discretization along the % axis will be avoided in
order to reduce the errors and to simplify the formulas.
In Fig. 2 the upper strip is indicated by a dotted line which
encircles the M terminals corresponding to it.

Thus it is necessary to compute the M X M impedance
matrix Zy of the terminals 1,2,--+,M with respect to
node 0, which represents the microstrip ground in the
model. Then the microstrip capacitance can be found by
short-circuiting the terminals 1,2,-++,M, and by comput-
ing the admittance between the resulting node and node
0.

If the model of Fig. 2 were directly used as in [19],
the computation of Z would be rather formidable, while
the circuit transformations, shown in the next section,
will allow closed formulas for the elements of Zy to be
obtained.

II1. CIRCUIT TRANSFORMATIONS

The N-port of Fig. 2, with the nodes 0,1,2,+++,M as out~
put terminals, becomes much more simplified with suitable
equivalent transformations. The following matrix, re-
presenting the short-circuit admittance of a degenerate
uniform ladder structure, whose shunt branches are open
circuits, is first diagonalized [217] by a similarity trans-
formation:
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rm(n—1)

bn = nll2 = 2si
g Sln[ N

:', n=12---N. (5)

By the preceding diagonalization, the cireuit of Fig. 2
can be transformed into that of Fig. 3(a) : actually the in-
sertion of four 2N-port transformers Ty, T, T, and I,
allows the decomposition of the capacitance reticulum of
Fig. 2 in 2N ladder 2-ports A,®, A, (n = 1,2,-.+,N),
whose values are determined by the g, elements defined in
(4). The N two-ports A,» are composed of H + 1 series
branches and of H shunt branches [Fig. 3(b) ], while the
N 2-ports A, are similar, but with an infinite number of
branches and with a higher impedance level [Fig. 3(¢)].
However, A/® and A,¢ are degenerate ladder networks
with shunt branches open, since g; = 0. That is, A,® is
a single admittance y1 = ¢/h [Fig. 3(d)], while A,¢ is
an open-cireuited 2-port.

]

1 -1 0 - 0 0]
-1 2 -1 0 0
0 -1 2 0 0
Gy = . = TnGnoTn*
(2)
0 0 0 2 —1
Lo o o —1 1

where Ty (Txt = Tx') and Guo are the orthogonal modal
matrix and the spectral representation of G, respectively.
Their elements are, respectively,

t; = (2/N)12cos [W(j — 1)]\/(,7: — 0'5)] , j=23,-+-,N
til = 1/(N)1/2 y T = 1,2, ‘,N

(3)
o = 2 [1 — cos (%)] n=12---N. (4)

The definition of the square root b, of g, will be useful
later on
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Fig. 3. (a) Pirst equivalent circuit of the lumped model of Fig. 2.
(b) 2-ports A,® (n = 2,+++,N). (c) 2-ports An™ (n = 2,3,-+~,N).
(d) 2-port A;®.
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As mentioned in Section II, the discretization along the
7 axis can be avoided by letting & go to zero in the elemen-
tary capacitances of A,® and A, [Fig. 3(b) and (c)J.
Their characteristic admittance and characteristic propa-
gation factors become

Jou® = hbs,

007»(00) = OC},

y()n(h) = eb,

n=23.--N (6)

whereas the chain matrices of I's, Ty and Iy, T'5 are, re-
spectively, [Fig. 3(a)]

TN ON] TN"1 ON jl

ON TN ON TN~1
Thus T';and Tyare mirror images equal to I'y and Ts.

Furthermore, in Fig. 3(a) the reference node ¢, common
to the 2-ports and to the transformers, does not at all
coincide with the microstrip ground (node 0).

Now the circuit of Fig. 3(a) can be further simplified.
Actually T, and T; can be substituted by a single trans-
former [T'; in Fig. 4(a)] because they can be considered
in parallel since they are mirror image equal. Then I'; can
be avoided because the N — 1-ports A, connected with
it have infinite attenuation [see (6)]. The last I'y can be
substituted by a 2-port transformer I's [Fig. 4(a)] with
voltage ratio N2 gince any of its input terminals are con-
nected with the ground (node 0).

Furthermore the N — 1 single driving point admittances
yo(n = 2,3,-+-,N) can substitute the 2N — 2 2-ports
A,® and A, [Fig. 4(a) ]; any admittance y, is composed
of a connection of two 2-ports A, and A, [Fig.4(b);
see (6)]

Yn = bu[1 + ¢/th (hbs) ], (8)

Finally the transformer T'; can be eliminated, obtaining
the circuit of Fig. 5, where the admittance y,’ is

yl’ = Ny1 = eN/h
IV. IMPEDANCE MATRIX

A physical consideration simplifies the computation of
matrix Z s (2m, m,) : since the width of the whole layer Nu
is much larger than the width w of the upper strip (Fig.
1), Zx becomes a symmetrical Toeplitz matrix, where any
element depends only on the difference of the two indices

y(m(oo) = bn

)

n = 23,---,N.

(9)
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Fig. 4. (a) Second equivalent circuit of the lumped model of
Fig. 2. (b) Driving point admittances y, (n = 2,3,+++,N).
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Fig. 5. Third (definitive) equiIYla,lent circuit of the lumped model of
Mg, 2.

Zmymg = Bn®™  with m =1+ Iml — Mg l)

m = 1,2,«-+ M. (10)

The index N denotes the considered width of the substrate.

This property of Zy allows a remarkable reduction of
computer time and storage because only M elements of Zy
must be computed, and also because it can be inverted
with a more convenient algorithm than the current ones,
as will be seen later on.

Hence the nodes m,; and m, must be chosen in the follow-
ing manner:

m = (N —m+2)/2

me = (N +m)/2,
m = (N—-m-+1)/2

me = (N +m —1)/2, N + m odd. (11)

For example, if m = 1, m, is equal to ms, that is, ;™ is
the driving-point impedance between the node N/2 (N
even) or (N 4+ 1)/2 (N odd) and the node 0 (Fig. 5).

Now we investigate the analytical expression of E,®
(m = 1,2,+++,M) by inspection of the equivalent circuit
of Fig. 5 and by the definition (10)

N 4+ m even

N
Rn® = h/(eN) + ; [ (tmy.ntms.n) /Ynls

m = 1,2,«++ M (12)
where the product ¢, ntms.» can be developed from (3)
tmyubman = (—1)"*/N
+ [(=D — (=1)¥+m 15,2/ (4N)
+ cos [#(n — 1)(m — 1)/N]/N. (13)
Thus we can split (12) by using (13)
R, = R,* + R,, m=1,2,++,M (14)

where
R, =0 for N 4+ meven

N
R, =r.=2> [(=1),*/(2Ny,)] for N + modd
n=2

(15)

N

R.* = 3 {cos[x(n — 1) (m — 1)/N]/(Ny.)}

n=2

+ h/(eN) — 2 [(=1)/(Nya) 1. (16)

n=2
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Now let us define

T = R,* — Rm—l*; m = 1)2)' * ')M (17)

where Ro* = 0 for sake of convenience.
Then from (16) and (17) we obtain

N
Tw = — 2, {sin [w(n — 1) (m — 1.5)/N b,/ (Ny.)},
m = 2,3,-++,M (18)
form =1

N
n=RE =N+ X [/l (19)
n=3,6,7-**
Now we could compute the impedance B.,®", but the sums
present in (15), (18), and (19) are extended to very
many terms because N is generally very high. A suitable
investigation of this problem allows a computation reduc-
tion; the factor 1/(Ny.) [see (8)] can be split into two

addends
1/(Nya) = d/[ba(e®® 4 k)] + f/bn, n = 23,--+,N

(20)
where
d= —=2¢/[N(1+ 6] k= (e—1)/(e+1)

f=VINQA+l (21

sin [#(N 4+ N,* — 2)/(4N)] + sin[«(N — N,*)/(4N)]
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The upper bound N, of the sums in (25), (27), and (29)
is theoretically equal to N, but in practice it can be chosen
much lower than N, because the factor 1/(e*® + k)
converges to zero for increasing n. The value N, can be
evaluated from

et gin [# (N, — 1)/(2N) ] =~ 10° (30)
ie.,

N,~ Nélog 10/ (2hx) (31)

where 10~ is the required precision.
The summations in (24), (26), and (28) can be sub-
stituted by suitable trigonometric formulas, i.e.,

b [w(N— DHEN+1)
ry = fsin N

]Sin [#(N/2) — 3n/4]
/ sin [w/2 4+ 7/(4N)] (32)

rm =

—fsin[(N —1) —21’]\-7 (m ~ 1.5)]

. sin [g(m - 1.5)] / sin [2% (m — 111.5)] (33)

Ng
r’ =h/(eN) +F X 2/b, +1n

n=3,6,7

Now we can substitute (20) into (15), (18), and (19)

Te =1 + 1.7, (22)
Twm = T + 0, m= 1,2, M (23)
where the following equalities hold:
N
ra = (f/2) 2 [(=1)"ba] (24)
n==2
N,
r" = (d/2) 3% [(=1)"b./ (e + k)] (25)

n=2

tw = —f% sin [w(n — 1) (m — 1.5)/N]),

n=2

m = 2,3, M (26)

T = — dAZ“: {sin [x(n — 1) (m — 1.5)/N]/(e?®= 4 k) },

n=2%

m = 2,3,--,M (27)

' =h/(eN)+f > (2/ba)

n=3 57"

(28)

N,
n’ =d 3 {2/[ba(e* + k)]}.

n=38,5,7 "

(29)

sin [#(N + N.* — 2)/(4N)] — sin [«(N — N,*)/(4N)]

[xa+91 @)

where N* = N, or N* = N, + 1 for N, even or odd,
respectively. At this point one has the complete formulas
necessary for the computation of the vector R, i.e.,

R® = ¢/ + 7'1" + R,
Bups® = Ru® 4 Ryt T’ + 1 (35)

R, =0for N 4+ m even, R, = r,/ + 1./’ for N + m odd.

Now it is necessary to compute the values of R,
(m=12,++-,M) for N = «. On the basis of several
numerical examples, the following recursive formula can
be shown to hold:

Rm(N) o~ Rm(le) - Am/N2, (36)

where A in a good approximation does not depend on N.
If

m = 1,2,-- .,M

R, = [4R,™ — R,®™7/3

then it is easy to prove that R.™ approximates the value
R, much more closely than R,,®. Thus it is possible to
have excellent approximation with N not too large.

(37)

V. MATRIX INVERSION

Now the terminals 1,2, + - ,M must be connected in only
one node in order to find the capacitance C with respect
to node 0; actually it is

C = [L1,++, 11 Za {11, -, L] (38)
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TABLE I

£ 4 8 16 32 64 128 256

12.832833014 [12.778402485 112.778806580 [12.778303290 [12.778392201 [12.778396426 ]12.778397004

4
12502125223 |12.484408741 [12.483317026 [12.483230474 [12.483219221 [12.483219017 ]12.483219006
8 4 10—3

12.470526891 |12.456365342 [12.455133715 [12.454969028 [12.454995091 |12.454989310 |12.454989226

16 ~4
1.6 10

12.469576405 112.455505540 [12.454220597 [12.454125746 [12.454117502 }12.454116658 [12.454116570
32 1.2 1072

12.469530228 |12.455464T4T [12.454178043 |12.4540834T6 [12.454074458 [12.454074146 |12.454073973
64 0.9 1076

12.469527464 [12.455462023 [12.454175199 |12.454080726 |12.454072476 |12.454071503 [12.454071490
128 -7

1.0 10
12.454080582 ]12.454072237 |12.454071432 ]12.454071334
256 1.0 1078
12.4540805T1 [12.454072234 [12.454071412 |12.454071323

2 1.0 1070

Note: Values of C (w/h,e, M,K) (per-unit-length capacitances of microstrip, normalized with respect to ) as func-
tions of K and M, while w/h and ¢ are equal to 1 and 6, respectively. For K = 2M the relative errors with respect to
C (1,6,256,512) are reported under the preceding values. The relative error of C (1,6,256,512) is estimated by ex-

trapolation.

that is, C is the sum of the M? elements of the matrix
Zy™L. Since Zy is a Toeplitz matrix [see (10) ] the iterative
Levinson algorithm [20] allows C' to be computed, ob-
taining as partial results the sums C,, of the m? elements of
the matrices Z,! (m = 1,2,---,M — 1), where Z,, is the
submatrix of Z.1, obtained by deleting the last row and
the last column, i.e.

Con = [1;17' ° ';1]Zm—1[1)1)' ° '71]t'

Hence it will be C = Cy,.

This algorithm has the following advantages compared
to classical matrix inversion methods: reduced storage,
low roundoff errors, and very short computer time.

A small computer like the IBM 1130 with 8K storage,
allows the inversion of a 300 X 300 Toeplitz matrix; thus
very dense discretization and/or very short computer time
are obtained.

But this algorithm has another characteristic; the par-
tial results Cy [see (39) ] are the values of the capacitances
of the microstrip with width of the upper strip (see Figs.
1 and 2) equal to wm/M and with the same thickness k.
Then by only one step one can find the whole curve of C,,
as function of wm/M for m = 1,2,---, M. This is very
important in the synthesis problem because one can im-
mediately obtain the value of w corresponding to the
required value of capacitance by a direct interpolation.

(39)

VI. ERRORS AND COMPUTER TIMES

The numerical results of the above algorithm are af-
fected by three types of errors:

e; error due to noninfinity of M, i.e., due to discreti-
zation;

e; error due to noninfinity of K = Nu/h;

ez error due to finite word length, i.e., due to roundoff.

If C is the effective value and Cy is the computed value,
then

C(w/hye) = Co(w/he,M,K)
+ ei(w/he, M) + e (w/h}€7K) + es. (40)

Error e; is stochastic and can be neglected for the mo-
ment since the considered values of M and K are such
that the deterministic error e; is prevailing; e, is also
negligible if the formula (37) is used with K = 8 4 32.
Only e, is a significant error, but it can be estimated on
the basis of a great number of numerical examples; it
turns out that it can be represented by the approximate
expression

er(w/he,M) ~5/3 Co(w/h,e,M,K)
— 2 Co(w/h,e, M/2,K) + 1/3 Co(w/h,e,M/4,K). (41)
Hence, if the preceding formula is substituted in (40), one
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TABLE II
w/h €= 6.0 €= 9.5 € = 16.0 |e = 28.0
a 134.5181 109.4533 85,7565 65.5287
0.1 | v |135.455 110.172 85.9659 65.5298
¢ 134.352 110.058 87.762 68.819
a | 112.4178 91.3236 71.5062 54.6170
0.2 | b j113.272 91.809 71.6954 54.6138
c | 112.255 91.776 73.015 57.110
a 90.3169 73.2752 57.3199 43.7543
0.4 b 91.172 73.702 574999 43.7391
e 89.909 73.290 58.110 45.281
a 72.7336 58.9191 46.0375 35.1161 |
0.7 b 73.613 59.379 46.2344 35.1153
¢ 71.995 58.502 46.217‘ 35.872
a 61.8381 50,0281 39.0528 - | 29.7697
1.0 [ b 62.713 50.501 39.2512 29.7629
c 60.970 49.431 38.948 30.144
a 42.2609 34.0775 26.5368 20.1967
201 b 43.149 34.592 26.7555 20,2086
¢ 41.510 33.493 26.248 20.197
a 26.4336 21.2335 16.4884 12.5260
4.0 { b 27.301 21.763 16.7210 12.5529
¢ 26.027 20.306 16.300 12.474
a 12.7125 10,1664 7.86887 5.96534
10.0 | b 13.341 10.568 8.0385 5.9746
c 12.485 9.981 7.8079 5.892

Note: Characteristic impedances, obtained by this algorithm g, by
the method of moments b, and by conformal mapping c.

obtains
C(w/hye) >~ C{w/h,e, M,K) = 8/3 Co(w/h,e,M,K)

— 2 Co(w/h,e,M/2,K) + 1/3 Co(w/h,e, M/4,K). (42)

Then one can conclude that C(w/h,e,M,K) approximates
the exact value C'(w/h,e) much more closely than Co(w/
h,e,M,K) for the same value M ; in this way the influence
of error e, is drastically reduced.

Table I shows for w/h = 1 and ¢ = 6, the value of
C(w/h,e,M ,K) normalized with respect to ¢ as a function
of M and K. One can easily observe the reduction of error
when M and K increase. Furthermore it is convenient to
choose the value of K =~ 2M in order that the errors due
to the finiteness of M and K be of the same order. However,
with M = 4 and K = 8, an accuracy 4 X 10~21is obtained,
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while with M = 64 and K = 128 the accuracy is 10~7. The
same results are obtained with different values of w/h and
e. Finally the values in Table I confirm that the roundoff
errors e; are negligible.

The computer time depends in a significant way only
on M and N,, according to the following formula (S in
seconds) :

S = mN, + aN.M + a;M? (43)

where, on the IBM 360/67 computer the values of the
coefficients, estimated experimentally, are

ay = 0.0007 g, = 0.000048 a3 = 0.000098.

For example, for an accuracy of 10~ the required time is
about 102 s,

The characteristic impedance Z, of the microstrip is
then caleulated by using the expression Z; = po/{vo-
[C(w/h,1)C(w/h,e) JV2} where wy (47 107 H/m) is the
magnetic permeability, and vy (2.9978 108 1a/s) is the
velocity of light. The computed results for a microstrip
with different values of ¢ and w/h are given in Table IT
and compared with those obtained by Farrar and Adams
[18] (by the method of moments) and by Sobol [22] (by
conformal mapping). The values of the capacitanee C(w/
h,e) were computed with M = 32 and K = 64 (accuracy
of about 10-%).

VII. CONCLUSIONS

A method was presented for the evaluation of TEM
parameters of microstrips based on a philosophy entirely
different from that followed in the current literature. The
circuit model used allows one to obtain very high accura-~
cies (10~%) or to reduce the computer time when ordinary
aceuracies are allowed (102 s for a 10~2 accuracy). The
model can be easily extended to cover more complicated
structures.
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Calculation of Microstrip Discontinuity Inductances

ALISTAIR F. THOMSON anp ANAND GOPINATH, MEMBER, IEEE

Abstract—Inductive components of microstrip discontinuity
equivalent circuits are calculated by the Galerkin method. The
formulation and method of calculation are discussed and a large
number of numerical results for symmétric corners, T junctions,
and steps changes are presented. These resulls compare well with
experiment.

INTRODUCTION

HE characterization of microstrip discontinuities by

equivalent circuits is currently of some interest. De-
tailed knowledge of the parameters in these circuits en-
ables easy implementation of paper designs without tedious
cut-and-try methods. While the published literature [1]-
[4] provides curves for the capacitive components of these
circuits, little is available for their inductive components.
The method of calculation suggested by Horton [5], [6]
is not rigorous since the inductance calculation is based
on charge estimates and the results obtained are not in
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agreement with experiment. The magnetic wall model has
been used for triplate lines which are wide and homogenous
and have confined fields, but its extension to microstrip
lines which are inhomogenous and much narrower in com-
parison and are open structures is not completely justified.

Quasi-static calculation of inductance by the moment
method [7] has provided results which show reasonable
agreement with experiment. However, the disadvantage of
this method for these three-dimensional problems as shown
by Farrar and Adams [1] is the very large computer store
requirements even for modest discretization. The alterna-
tive is to use a finite-element method as in the skin-effect
formulation [8]. The results of discontinuity inductance
from this method obtained previously were inaccurate as
they were arrived at by subtracting two nearly equal
numbers. Also the method was limited to finite-length
strips and thus could not represent the actual situation
in which the strips extend so far from the discontinuity
that they may be considered as semi-infinite. The present
paper is an extension of this finite-element method which
overcomes these difficulties, and the results obtained for
right-angled bends, step-width changes, and symmetrical
T junctions are presented in the form of curves. Compari-
son of the results with experiment [97] shows reasonable



